Odor Control Strategy Best Management Practices Use quick-disconnect fittings Avoid "Free Fall" of septage Provide washdown facilities for spills Ventilate tanks to odor control system Everything inside! Odor Control Strategy OBest Management Practices - Available Techniques Remote Site Odor counteractants (Misting) Wet Scrubber Activated Carbon Biofilter - Available Techniques ORemote Site - Available Techniques Misting (odor counteractants) Sprayed into the atmosphere React with odorous compounds Encapsulate odorous compounds Substantial cost of chemicals 30 to 40% reduction of odors | Technique | Cost Factors | Advantages | Disadvantages | |---------------------------------|--|---|--| | Wet Scrubber | Moderate
Capital and
operating
costs | Effective and
Reliable | High Chemical
Use, and spent
chemical to
dispose | | Activated
Carbon
Absorber | Cost depends
on frequency
of carbon
use | Simple, few
moving parts,
effective | Only
applicable for
dilute streams | | Biofilters | Low capital
and O&M
costs | Simple,
minimum
O&M | Design criteria
not well
established,
large land area | | Odor
Counteractants | Cost
dependent
upon
chemical
usage | Low Capital cost | Limited odor
removal
efficiency | | Typical Design Criteria for Biofilters | | | | |--|---|--|--| | Parameter | Value | | | | Hydraulic Loading | 2-10 cfm/sq ft | | | | Detention Time | 20-60 seconds | | | | Media Depth | 3-5 ft | | | | Media pH | 6-8 | | | | Pore Volume | 40-50% | | | | Moisture Content | 50-60% | | | | Media Constitutents | Bark Mulch, hardwood chips, biosolids or leaf compost | | | | Humidity of inlet air | 80-100% | | | | Recommend air changes | 6 volume changes/hour | | |